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Abstract

Symmetry arguments are used to derive a set of exact identities between
irreducible vertex functions for the replica symmetric field theory of the Ising
spin glass in zero magnetic field. Their range of applicability spans from mean-
field to short-ranged systems in physical dimensions. The replica symmetric
theory is unstable for d > 8, as in the mean-field theory. For 6 < d < 8 and
d < 6, the resummation of an infinite number of terms is necessary to settle the
problem. When d < 8, these Ward-like identities must be used to distinguish
an Almeida—Thouless line from the replica symmetric droplet phase.

PACS numbers: 75.10.Nr, 05.10.Cc

Field theory has proved to be an extremely useful tool in studying critical transitions in ordinary
systems, mostly by providing standard methods such as the loop expansion (above the upper
critical dimension) and the renormalization group [1]. Its adaptation to the spin glass problem
came just after the introduction of the Edwards—Anderson model and the application of the
replica trick [2], resulting in a kind of replica field theory (see [3] and references therein).
The first solution of the mean-field theory of the Ising spin glass provided a simple transition
in zero external magnetic field from the paramagnet to a replica symmetric (RS) spin glass
state [4] which, however, was later proved to be unstable [5]. This instability then persisted
perturbatively down to the upper critical dimension 6 [3], and even below it [6]. Repair came
soon, at least on the mean-field level, by the famous replica symmetry breaking (RSB) scheme
of Parisi (for details see [7]): the spin glass transition is now at a lower symmetry phase which
is marginally stable forall 7 < T, i.e. it is a massless phase and has a special—ultrametrical—
hierarchy. The RSB transition also has the peculiarity of extending to nonzero magnetic fields
along the Almeida—Thouless (AT) transition line [5].

From this point onwards, the spin glass community has become highly divided about the
type of transition and the structure of the spin glass state of short-ranged, finite-dimensional
models. Supporters of the RSB scenario followed the classical route trying to build a field
theory on the basis of the—highly nontrivial—Parisi solution [6]. As it turned out from the
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physical interpretation of RSB [7], the Parisi theory corresponds to a complicated ergodicity
breaking with a Gibbs state decomposed into many pure states. On the other hand, the so-called
droplet theory [8, 9], which was developed mostly on the original lattice system, has a simpler
phase structure with only two pure states which are related by the spin inversion symmetry
(just like in a ferromagnet), and it predicts that a magnetic field destroys the transition. In the
droplet picture, the mode called replicon (R) remains massless in the whole spin glass phase
[8] providing the only common feature which both theories share.

The simple phase structure of the droplet theory implies an RS phase with a nonzero
order parameter; the corresponding replica field theory has a Lagrangian which is invariant
for any permutation of the » replicas (up to cubic order, it was displayed in [10]). Since the
coupling constants of such a field theory are chosen by symmetry, or—alternatively—thought
to be the outcome of summing out short-ranged fluctuations down to the momentum cut-off A,
they have little memory of the original control parameters such as temperature and magnetic
field. As a nonzero magnetic field does not change the symmetry, it is difficult to distinguish
between a zero-field RS spin glass phase and an AT line (massless and replica symmetric too).
In this letter, we use exact symmetry arguments to find out the thermal route of the spin glass
in zero magnetic field when crossing 7, from the paramagnet having the Lagrangian
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where the classical fields ¢*# are symmetrical in the replica indices a, § = 1, ...,n with

zero diagonal, and momentum conservation is understood in the primed sums. The number
of spins N goes to infinity in the thermodynamic limit, while n — 0 ensures the spin glass
limit. (A barred notation for the bare coupling constants is used to distinguish them from
the corresponding exact vertex functions.) In addition to the permutational symmetry of the
presumed low-temperature phase, the invariants in (1) have the extra attribute that a replica
always occurs an even number of times; a Hubbard—Stratonovich-like derivation [3, 10] of
(1) makes this point evident. In mathematical form, £ is invariant under the transformation
¢ = (=1)**P¢p*P. Following that transformation by the special permutation of grouping
odd and even replicas separately—i.e. (1,2,3,...,n) — (1,3,5,...,2,4,6,...)—may
lead us to figure out that we can define a class of transformations leaving £ of (1) invariant
as follows: let us divide the n replicas into two groups consisting of p and n — p elements
(p being a free parameter). For the transformed field ¢’, we have

2

¢,a/3 ¢°P, for « and B in the same group,
B —¢*P, for a and B in different groups.

Therefore, the paramagnetic phase has a higher symmetry than even the simplest, generic
replica symmetric, spin glass phase, and the presumed paramagnet to droplet spin glass
transition breaks that higher symmetry in the replica field theory.

Proceeding further, we can follow the steps of [ 11] to conclude exact identities between the
irreducible vertices of the low-temperature RS phase. Including a source term — ), g hap qbgi 0
into (1), a Legendre-transformed free energy F(q) can be derived, and it is invariant under
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the obviously orthogonal transformation O of equation (2).' The derivatives of F provide the
zero-momentum one-particle irreducible vertices [1]; their definitions are the following:

_Haﬁ = oF , MD(/S,)/5 = 32—F’
09ap 09ap9qys
and similar formulae for Weg s .0, Uagysuv.pe. €tc. From F(q') = F(q) and the
orthogonality of O follows (using tensorial notation):
H = OH, M =OMO ', 3)

and analogous relations for higher order terms. As p is a free parameter, O is in fact a
continuous symmetry transformation, and assuming that q is replica symmetric, it is easy to
derive \/(q' — q)? = 2g+/p(n — p), providing an infinitesimal transformation for p(n — p)
small. We can, therefore, expand the left-hand sides of equation (3) around q, and equating
the coefficients of identical powers of p and n — p. Assuming stationarity, i.e. H = 0, and
remembering that we are in an RS state with a nonzero order parameter g, several identities
can be derived in this way between the vertices m, my, ms; wy, ..., wg; Uy, ...; etc2. These
are however—unlike traditional Ward-identities—power series of ¢ with higher and higher
order vertices, the most prominent ones are displayed here:

m1+zm2=—<w2+Ew3+n—2w6>q+g(uz+"')qz+"‘» “4)
2 2 2 3
1 1
m2=—|:<w1+§w3>+n<§w5+w6)]q+~-,
(&)
m3=—|:<w4+lw5—lw6>+ﬁw7]q+-~- (6)
2 2 2
following from the first and
n l’lz
<w2+§w3+7w6>=(u2+--~)q+-~- @)

from the second equation in equation (3). (Ellipsis dots in the above expressions are to
substitute higher order terms in # or q.)

The value of the identities in equations (4)—(7), and the others not displayed here, rests
on their generality—their derivation used only symmetry arguments; as a result, they must be
valid for the mean-field as well as for low-dimensional systems. It is tempting to solve these
equations iteratively, i.e. assuming all the vertices are analytical in g. The most important
result we can get in this way is the famous instability [5] of the replicon mass I'r forn — 0
and u, > 0 at criticality:

Tr =2m; = —3u2q” + 0(¢q°). (8)

' The n(n —1)/2 qup’s can be arranged into the vector q, and the transformation in equation (2) may then be written
as q' = Oq with the diagonal transformation matrix O having the properties Oqg o = 1 or —1, depending on « and
B belonging to the same group or not.

2 These identities are much simpler when displayed in terms of the set of vertices with the lower case notation (their
bare counterparts are the coupling constants in front of the invariants with the unrestricted sums in the Lagrangian).
The linear relationship between these two sets of parameters was derived in [10] for 7 s and w s; equations (20)—(24)
and table 1. As a property of the generic RS symmetry, it is not restricted to the bare couplings, but is valid for the
exact vertices too. The formulae for the 23 quartic couplings are more complicated and will be detailed in a longer
publication.
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Moreover, all the vertices incompatible with the symmetry of the paramagnetic phase are
expressible in terms of those present for T > 7. too. In leading order in ¢, we have
my; = —wiq, Wy = Uxqg, w3 = uzq,ws = usq and ws = u;q, while all the others
(m3, we, w7, wg) are of order g2. All these results can be verified for the mean-field theory
(for a generic n) using the explicit formulae of [10] and their extensions to the quartic order,
and exploiting the fact that bare and exact parameters are identical for a zero-loop calculation.
We cannot follow this procedure in any finite dimension d, as the exact vertices are
no longer analytical as a function of g. Nevertheless, equations (4)—(7) can now be used
perturbatively, for d > 6, to compute the bare parameters as a function of ¢, and they will
have, besides the analytical part, terms with noninteger, d-dependent powers. Instead of
equation (8), we now have for the deviation of the bare replicon mass from its critical value,

20y — ) = —3iig” + Cq] (W19)'~?, ©9)

where € = 6 — d. Cy—unlike the coefficient of the quadratic term—cannot be computed by
a simple truncation of (4), since a contribution from an arbitrary k-point vertex (multiplied by
¢*~?) must be included?.

At that point, two important remarks are appropriate. First, there is some ambiguity in
assigning the bare coupling constants to a given physical state below 7 fixed by g: an offset
of the zero-momentum fields, qbzi 0o — ¢gﬁ 0~ \/ﬁ ®, leaves all the irreducible vertices
unaltered while the bare couplings changing. We can get rid of ‘tadpole’ insertions by the
choice ® = ¢ rendering the one-point function zero [3]. We use that case for a unique
definition of the bare parameter space throughout this letter. Second, we must emphasize that
perturbation theory remains valid for d > 6 in the loop-expansion sense, since C; as well as
the coefficient of the g2 term in (9), and in fact any quantity, can be computed, at least in
principle, in terms of H)f, iy, ..., s, etc. Nevertheless, unlike the analytical contributions
which can be computed by the truncation method just as in the mean-field case, to get the
d-dependent powers at a given order of the loop expansion, we must resum an infinite number
of terms (all the ‘bubbles’ for C; at one-loop order). (We are not able to do this at the moment,
though it may not be a completely hopeless task.)

An evaluation of equation (5) at one-loop level provides us

iy = —ig[1+ O (w})] + Chwt(ig) "5, (10)

with C; again comprising an infinite number of terms, and there is a good chance that the
linear term is exactly —;q, i.e. it originates from the offset of the fields alone.

After elucidating the g-dependence of the bare parameters, expressions for the exact
masses can be straightforwardly computed at the one-loop level:

dp 1 N
@2m)4 p*(p* +2)?

__%— 2 1gm20m y1—%
I = —3ig” — 1607 (i)' (1n

for n = 0 and (keeping a generic n now)

Ta—Tr=(0—2m=—(n—2)ing (1—";211)%). (12)

The dots in (11) refer to the infinite terms coming from the 5-leg, 6-leg, etc vertices. (Similar
terms in (12) are not displayed, as they are definitely subleading when d > 6.) While the
anomalous mode (A) behaves regularly for any d > 6 and is massive, there is a competition
between the two terms in I'r: as long as d > 8, the d-dependent power in (11) is subleading,
and the truncation method to calculate leading terms works as well as for the mean-field theory.

3 The one-loop k-leg ‘bubble’ gives a (wlq)3’k’% contribution.
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We thus conclude that the RS phase is unstable and RSB characterizes the spin glass phase for
d > 8.

Stability depends on the infinite sum in equation (11), which is not available at the
moment, when 6 < d < 8. We are taking the opportunity to comment on earlier works now.
In [3], the second term for I'g without the infinite sum represented by the dots was obtained,
and—as it is manifestly negative—it was inferred that instability thus persisted below eight
dimensions. The authors, however, found a sophisticated way to construct a different RS
solution which is marginally stable, i.e. ' = 0. (A modified version of that solution was
proposed in a recent paper as a candidate model for the droplet theory [12].) The first result
was based on the traditional way to build up a symmetry-broken theory from the symmetrical
Lagrangian (1): the bare parameters are continued analytically below T, and the offset of the
fields, as explained above, then breaks the symmetry. This procedure is obviously correct for
the leading terms, e.g. the O(g) term of (10) is reproduced, and it gives definite predictions
for the coefficients Cy, C;l, etc. These, however, should be justified by showing that they
satisfy the exact identities above. As a matter of fact, the second procedure of [3] resulting
in the massless replicon mode is also correct in leading order; not surprisingly, C, is tuned
to shift I'g to zero. The most remarkable observation concerns the inclusion of an external
magnetic field H.y which scales as HezXt ~ q2—§' It also contributes to C,; and may render
the replicon mode massless [13]. The only way to distinguish an AT line from a droplet-like
phase is by means of the exact identities which exploit the extra symmetry of the zero-field
case.

Finally, we now turn to the d < 6 case, where the loop expansion breaks down and
the perturbative renormalization group elaborated in [14] takes over its role. What follows
from now on is highly based on the details of [14]. To study the crossover region around the
zero-field fixed point w}? = —e/(n — 2), it is useful to introduce Wegner’s nonlinear scaling
fields [15] defined by the exact renormalization equations g; = A; g;, where A; s are the scaling
exponents. The bare parameters can be expressed in terms of g; s, as displayed here for the
three masses (omitting nonlinear terms and irrelevant fields):

- n_2—*2
mp; = WiT+(g1+2g+g3) + -,
my=—(g2+83)+ -,
1
ms = —g3+---.
3 4g3

~

Assuming the form g; = C; (w} )%, we can conclude from (6) that C3 = O (¢), hence hindering
us to compute the correction term of z3 = 1 + --- at that order. The other two exponents,
however, can be derived from the logarithms of (4) and (5) providing z; = 1 —¢€/2+O(€?) and
72 = 1+ O(€?). These results are in accord with the relations A; = (2 — €/2 + 1/2)z;—which
must follow from the flow of the order parameter ¢ = (8/v)q, with B/v = (2 —€/2 +n/2)—
when comparing with the independent calculations of A; s and n in [14]. Although the leading
terms for C; s are trivial [C; = (n —2) + O(€),C, = 1 + O(¢e) and C3 = O(e)], the
O (¢€) corrections can be obtained again, just like for 6 < d < 8, including all the terms of
equations (4)—(7). To see this, let us consider the scaling form of a generic k-point vertex

r® —|q, AR5 DR (o ),

where we have used the common notatlon I" for the Vertlces (instead of m’s,w’s, u s etc). The

two scaling variables are x = g2/|g1|ﬂl = g2/|g1| % and y= gg/lgllﬂ = gg/lgll 3 , whereas
['®s are scaling functions specific to the given vertex from the k-point family. As we have for



L66 Letter to the Editor

the leading terms in e: ['® ~ ﬂ)i‘k (k > 3 and forgetting now about the only exception w;), a
typical term of, say, equation (4):

-2 2= dy—k) - 42— N L
g T ® ~ ¢ i) T ~ B (wig)
1.e. all terms are of the same € order.
To test stability below six dimensions, I'g(x, y) must be computed in e-expansion first,

and then substituting x = C,/|C|| E ,y = C3/|Cq] b provides us the replicon mass for T < T
in zero magnetic field. Fromx = 1/(2 —n) + O(¢) and y = O (¢€), we can conclude
n

f'R:(—1+2x+y)+~-~=2 + 0 (e).

—n

In the spin glass limit n — 0, stability depends on the correction term which contains two
contributions: the first one comes from the correction of the scaling function ['r—which has
been computed and gives a negative (unstable) result, and the second one from those of x and
y. These are however—as argued above—not available at the moment, as they result from a
resummation of an infinite number of terms in the identity of equation (4).

To conclude, the importance of finding the correct trajectory in the bare parameter space in
the absence of an external magnetic field (what is called here the thermal route) is emphasized
when the stability of the low-temperature RS phase—the droplet phase—is tested. We argued
that for 6 < d < 8 and d < 6 an infinite number of one-loop graphs should be resummed
to settle the problem. Without using the Ward-like identities derived in this letter, the droplet
phase cannot be distinguished from an AT line for d < 8. Our conclusions are in conflict with
those of a recent paper by Moore [16]. Although both of us realized the necessity to resum
an infinite number of terms, in [16] self-energy graphs with different loops are proposed to
be summed to get rid of infrared divergences caused by the replicon mode. In this letter, we
argue that allowing for all the one-loop graphs with different numbers of legs is a must to
ensure the extra symmetry imposed by the lack of an external magnetic field. Old beliefs that
the replica field theory is inconsistent with the droplet picture were based on the instability
emerging at one-loop order if equation (11) without the infinite terms is used, which we believe
is not correct. Therefore, the conclusion that the RS phase is unstable for 6 < d < 8 is thus
premature, just as that it is stable for d < 6. Equation (11) loses its relevance for d < 6,
and the study of the crossover region around the nontrivial fixed point is inevitable. It must
be stressed that our identities are valid even in three dimensions, though perturbative methods
are not available then to take advantage of them.

Acknowledgments

Discussions with C De Dominicis are highly appreciated. I am grateful to M A Moore for
sending me comments to the e-print version of this letter.

References

[1] Brézin E, Le Guillou J C and Zinn-Justin J 1976 Field Theoretical Approach to Critical Phenomena (Phase
Transitions and Critical Phenomena vol 6) (New York: Academic) chapter 3

[2] Edwards S F and Anderson P W 1975 J. Phys. F: Met. Phys. 5 965

[3] Bray A Jand Moore M A 1979 J. Phys. C: Solid State Phys. 12 79

[4] Sherrington D and Kirkpatrick S 1975 Phys. Rev. Lett. 35 1792

[5] de Almeida J R L and Thouless D J 1978 J. Phys. A: Math. Gen. 11 983

[6] De Dominicis C, Kondor I and Temesvari T 1998 Beyond the Sherrington—Kirkpatrick Model (Series on
Directions in Condensed Matter Physics vol 12) (Singapore: World Scientific) p 119 (Preprint cond-
mat/9705215)


http://dx.doi.org/10.1088/0305-4608/5/5/017
http://dx.doi.org/10.1088/0022-3719/12/1/020
http://dx.doi.org/10.1103/PhysRevLett.35.1792
http://dx.doi.org/10.1088/0305-4470/11/5/028

Letter to the Editor L67

[7]
[8]

[9]
(10]
[11]
[12]
[13]
(14]
[15]
[16]

Mézard M, Parisi G and Virasoro M A 1987 Spin Glass Theory and Beyond (Lecture Notes in Physics vol 9)
(Singapore: World Scientific)

Bray A J and Moore M A 1986 Proceedings of the Heidelberg Colloquium on Glassy Dynamics (Lecture Notes
in Physics vol 275) ed J L van Hemmen and I Morgenstern (Berlin: Springer) and references therein

Fisher D S and Huse D A 1986 Phys. Rev. Lett. 56 1601

Temesvari T, De Dominicis C and Pimentel I R 2002 Eur. Phys. J. B 25 361 (Preprint cond-mat/0202162)

Temesvari T, Kondor I and De Dominicis C 2000 Eur. Phys. J. B 18 493 (Preprint cond-mat/0007340)

De Dominicis C 2005 Preprint cond-mat/0509096

Green J E, Moore M A and Bray A J 1983 J. Phys. C: Solid State Phys. 16 L815

Pimentel I R, Temesvari T and De Dominicis C 2002 Phys. Rev. B 65 224420 (Preprint cond-mat/0204615)

Wegner F J 1972 Phys. Rev. B 5 4529

Moore M A 2005 Preprint cond-mat/0508087


http://dx.doi.org/10.1103/PhysRevLett.56.1601
http://dx.doi.org/10.1007/s10052-002-1031-x
http://www.arxiv.org/abs/cond-mat$/$0202162
http://dx.doi.org/10.1007/s100510070038
http://www.arxiv.org/abs/cond-mat$/$0007340
http://www.arxiv.org/abs/cond-mat$/$0509096
http://dx.doi.org/10.1088/0022-3719/16/22/008
http://dx.doi.org/10.1103/PhysRevB.65.224420
http://www.arxiv.org/abs/cond-mat$/$0204615
http://dx.doi.org/10.1103/PhysRevB.5.4529
http://www.arxiv.org/abs/cond-mat$/$0508087

	Acknowledgments
	References

